Багатосеместрова дисципліна Вступ до вищої математики. Частина 2.

Освітня програма: «Прикладна (комп’ютерна) лінгвістика та англійська мова»

Структурний підрозділ: Навчально-науковий інститут філології

Назва дисципліни
Багатосеместрова дисципліна Вступ до вищої математики. Частина 2.
Код дисципліни
ННД.11.01
Тип модуля
Обов’язкова дисципліна для ОП
Цикл вищої освіти
Перший
Рік навчання
2022/2023
Семестр / Триместр
2 Семестр
Кількість кредитів ЕСТS
2
Результати навчання
ПРН 3. Організовувати процес свого навчання й самоосвіти. ПРН 18. Мати навички управління комплексними діями або проєктами при розв’язанні складних проблем у професійній діяльності в галузі комп'ютерної лінгвістики та нести відповідальність за прийняття рішень у непередбачуваних умовах. ПРН 22. Знати базовий математичний понятійний апарат та математичні методи фундаментальних розділів математики та використовувати їх у спеціалізованих завданнях комп’ютерної лінгвістики.
Форма навчання
Очна форма
Попередні умови та додаткові вимоги
1. Успішне опанування курсів: вступ до вищої математики (1 семестр). 2. Знання теорії евклідових просторів, окремих понять класичного аналізу функцій однієї змінної (елементарні функції, збіжні послідовності, границя і неперервність функції); 3. Уміння обчислювати границі функцій однієї змінної, визначники невеликих порядків.
Зміст навчальної дисципліни
Частина 2 багатосеместрової дисципліни "Вступ до вищої математики" . У межах курсу розглядається диференціальне функцій однієї змінної та декількох змінних (включно з задачами на безумовний та умовний екстремум), а також інтегральне числення функції однієї змінної, включно з невласними інтегралами.
Рекомендована та необхідна література
А.Г. Мерзляк, Д.А.Номіровський, В.Б. Полонський, М.С. Якір Алгебра і початки аналізу (профільний рівень), 10 кл. Харків: Гімназія, 2018. – 422 с. 1. В.С. Пономаренко (ред). Вища математика. Базовий підручник для студентів вищих навчальних закладів. Харків: Фоліо, 2014. – 670 с. 2. І.І. Ляшко, В.Ф. Ємельянов, О.К. Боярчук. Математичний аналіз. Частина 1. К.: Вища школа, 1992. – 495 с.
Заплановані освітні заходи та методи викладання
Лекції, семінарські заняття, самостійна робота.
Методи та критерії оцінювання
Відповіді на семінарському занятті з теми 1: РН 1.1; РН 1.2; РН 2.2; РН 3.1; РН 4.1 – 6 балів. Контрольна робота №1: РН 1.1; РН 1.2; РН 2.2; РН 4.1 – 24 бали. Відповіді на семінарському занятті з теми 2: РН 1.1; РН 1.3;РН 2.2; РН 3.1; РН 4.1 – 6 балів. Контрольна робота №2: РН 1.1; РН 1.3;РН 2.2; РН 4.1 – 24 бали. Підсумкове оцінювання (у формі іспиту): максимальна кількість балів на іспиті - 40 балів, мінімальна кількість балів (позитивна оцінка), які додаються до семестрових – 24 бали (60% максимальної кількості балів, відведених на іспит); на іспиті оцінюються такі результати навчання: РН 1.1; РН1.2; РН 1.3; РН 2.1; РН 2.2; РН 2.3; РН 3.2. іспит проводиться у формі письмової роботи з 4 завданнями з відкритою відповіддю, кожне з яких оцінюється максимально 10 балами. Завдання 1 і 2 є питаннями теоретичного характеру, а завдання 3 і 4 – задачами.
Мова викладання
Українська

Кафедри

Наступні кафедри задіяні у викладанні наведеної дисципліни

Обчислювальної Математики
Факультет комп'ютерних наук та кібернетики