Fundamentals of mathematical statistics and probability theory

Course: Transboundary Environmental Cooperation

Structural unit: heohrafichnyi fakultet

Title
Fundamentals of mathematical statistics and probability theory
Code
ОК 02
Module type
Обов’язкова дисципліна для ОП
Educational cycle
First
Year of study when the component is delivered
2021/2022
Semester/trimester when the component is delivered
1 Semester
Number of ECTS credits allocated
4
Learning outcomes
P05. Collect, process and analyze information in the field of geographical sciences for cross-border needs, national, regional and local complex ecological projects P06. Use informative technologies, cartographic and geoinformation models in the study landscape structure of the territory, execution of complex ecological projects P08. Apply models, methods physics, geochemistry, geology, ecology, mathematics, information technologies etc. when studying natural and social processes of formation and development of landscapes and their components. P11. To adhere to moral and ethical aspects of research, honesty, professional code of conduct.
Form of study
Full-time form
Prerequisites and co-requisites
There are no prerequisites for mastering or choosing an academic discipline.
Course content
Educational discipline "Fundamentals of mathematical statistics and probability theory" belongs to the mandatory components of the educational program of training specialists in education at the "bachelor" level of the field of knowledge 10 - Natural sciences with a specialty 106 - Geography educational program "Cross-border ecological cooperation". The discipline "Fundamentals of mathematical statistics and the theory of probabilities" studies theoretical and probabilistic and statistical methods of collecting, systematizing and processing the results of observations with a goal detection of statistical regularities of a feature or features of a certain set of elements and covers the following range of questions: fundamentals of combinatorics, random events and random values, sampling and its characteristics, as well as paired linear regression. It is taught in the 1st semester of the 1st course in the amount of 120 hours. (4 ECTS credits) in particular: lectures – 28 hours, practical - 28 hours, independent work - 64 hours. The course includes 2 contents modules and 2 modular test papers. The discipline ends with a test.
Recommended or required reading and other learning resources/tools
1. O. Chernova, F. Lavancier and P. Rochet. Averaging of density kernel estimators, Statistics and Probability Letters, 2020, Vol. 158. DOI: https://doi.org/10.1016/j.spl.2019.108645 2. O. Chernova and A. Kukush. Testing linear and nonlinear hypotheses in a Cox proportional hazards model with errors in covariates. Lithuanian Journal of Statistics, 2019, 58, N1, 39-47. DOI: https://doi.org/10.15388/LJS.2019.16669 3. Жерновий Ю.В. Збірник задач з теорії ймовірностей та математичної статистики для студентів нематематичних спеціальностей. Львів, 2009. – 18 с. 4. Жерновий Ю.В. Теорія ймовірностей та математична статистика: тексти лекцій для студентів нематематичних спеціальностей. Львів, 2008. – 101 с. 5. Турчин В.М. Теорія ймовірностей і математична статистика. Основні поняття, приклади, задачі. – Дніпропетровськ, Видавництво ДНУ, 2006. – 475 с. 6. Практикум з теорії ймовірностей та математичної статистики: навчальний посібник / за ред. Р. К. Чорнея. Київ: МАУП, 2003. – 328 с.
Planned learning activities and teaching methods
lecture, practical session, independent work
Assessment methods and criteria
active work at lectures, modular control work, assessment, solving problems on practical classes, performance of tasks independent work, modular control work,
Language of instruction
Ukrainian

Lecturers

This discipline is taught by the following teachers

Oksana O. Chernova
The Department of General Mathematics
Faculty of Mechanics and Mathematics of Taras Shevchenko National University of Kyiv

Departments

The following departments are involved in teaching the above discipline

The Department of General Mathematics
Faculty of Mechanics and Mathematics of Taras Shevchenko National University of Kyiv