Mathematical analysis 1 semester
Course: Econophysics
Structural unit: Faculty of Radiophysics, Electronics and Computer Systems
Title
Mathematical analysis 1 semester
Code
ОК.08
Module type
Обов’язкова дисципліна для ОП
Educational cycle
First
Year of study when the component is delivered
2021/2022
Semester/trimester when the component is delivered
1 Semester
Number of ECTS credits allocated
8
Learning outcomes
Study results (1 semester)
A student must know the following sections:
1 The concept of boundary and continuity of a function
2. Differentiability of the function of a function of one variable
3. Extreme function of one variable
4 Initial functions and integrals
5 Differentiability of the function of many variables
6 Extremum function of many variables
The student must be able to choose mathematical methods, methods of mathematical analysis for solving physical problems: to acquire skills of independent use and study literature on mathematical disciplines
Form of study
Full-time form
Prerequisites and co-requisites
Preparation for the program of secondary school in elementary mathematics is required.
Course content
The basic normative discipline "Mathematical Analysis" consists of the following main sections: "Differential calculus of scalar functions of a scalar argument", "Differential calculus of functions of a vector argument", "Integral calculus of scalar functions of a scalar argument", "Improper integrals and parameter-dependent integrals" "Integral calculus of vector argument functions", "Elements of mathematical field theory", "Numerical and functional series". These sections include such basic concepts of mathematical analysis as the boundary and continuity of a function, differentiability, extremum of a function, initial function and integral, series, elements of mathematical field theory. All mathematical concepts studied are illustrated by applications.
When studying the course, both final tests and individual independent work of students are provided
Recommended or required reading and other learning resources/tools
1.Дороговцев А.Я., Математичний аналіз (ч.І, ч.ІІ).К.,1993.
2. С.А. Кривошея, Н.В. Майко О.В. Моторна, Т.М. Прощенко Математичний аналіз. Завдання для самостійної роботи студентів. Частина 1, К. ВПЦ КУ, 2013
3. С.А. Кривошея, Н.В. Майко О.В. Моторна, Т.М. Прощенко Математичний аналіз. Завдання для самостійної роботи студентів.. Частина 2, К. ВПЦ КУ, 2015
3.С.А. Кривошея, Н.В. Майко О.В. Моторна, Т.М. Прощенко Елементи векторного аналізу. Навчальний посібник. К. ВПЦ КУ, 2018
4. М.О.Денисьєвський, О.О.Курченко, В.Н.Нагорний, О.Н.Нестеренко, Т.О.Петрова, А.В.Чайковський Збірник задач з математичного аналізу. Частина I. Функції однієї змінної – К.: ВПЦ “Київський університет”, 2005.- http://www.mechmat.univ.kiev.ua/wp-content/uploads/2018/03/all.pdf
5. Збірник задач з математичного аналізу. Функції кількох змінних. М.О. Денисьєвський, А.В. Чайковський. – К.: ВПЦ “Київський університет”, 2012.
http://www.mechmat.univ.kiev.ua/wp-content/uploads/2018/03/matan_fkz.pdf
Planned learning activities and teaching methods
Lectures, practical classes, consultations, independent work.
Assessment methods and criteria
According to the credit-module system (independent work, credit). The final grade is issued on the basis of intermediate grades (60%) and credits (40%).
Semester evaluation: : each academic semester has 4 meaningful modules (assessed at 15 points each).
Final assessment (in the form of an exam): the form of the exam is written-oral. The exam ticket consists of 2 theoretical questions, questions are evaluated on 8 points, and 4 practical tasks, tasks are evaluated on 6 points.
The condition for achieving a positive grade for the discipline is to obtain at least 60 points, the grade for the exam can not be less than 24 points.
Conditions of admission to the final exam: the condition of admission to the exam is that the graduate student receives a total of not less than the critical-calculated minimum for the semester. Students who scored less than 36 points during the semester must write an additional test in order to be admitted to the exam.
Language of instruction
Ukrainian
Lecturers
This discipline is taught by the following teachers
Oksana
Vitaliivna
Motorna
Department of mathematics and Theoretical Radio Physics
Faculty of Radiophysics, Electronics and Computer Systems
Faculty of Radiophysics, Electronics and Computer Systems
Departments
The following departments are involved in teaching the above discipline
Department of mathematics and Theoretical Radio Physics
Faculty of Radiophysics, Electronics and Computer Systems