Electrodynamics

Course: Optotechnique

Structural unit: Faculty of Physics

Title
Electrodynamics
Code
ОК 20.
Module type
Обов’язкова дисципліна для ОП
Educational cycle
First
Year of study when the component is delivered
2021/2022
Semester/trimester when the component is delivered
3 Semester
Number of ECTS credits allocated
5
Learning outcomes
To understand the broad interdisciplinary context of the specialty, its place in the theory of knowledge and evaluation of objects and phenomena. To be able to use the principles and methods of reproduction of reference values in the construction of reference measuring instruments (standard samples, reference transducers, reference measuring instruments. To know, understand and be able to apply at a basic level the basic principles of general and theoretical physics, in particular, classical, relativistic and quantum mechanics, molecular physics and thermodynamics, electromagnetism, wave and quantum optics, atomic and nucleus physics to establish, analyze, interpret, explain and classify the essence and mechanisms of various physical phenomena and processes to solve complex specialized problems and practical problems in physics, optics and laser physics.
Form of study
Full-time form
Prerequisites and co-requisites
To know the basic laws of electricity and magnetism, optics. To know the basic concepts of the courses of mathematical analysis, ordinary differential equations, vector and tensor analysis, mathematical physics. To be able to apply methods of mathematical analysis and mathematical physics. To be able to perform operations on vector and tensor analysis. To be able to solve ordinary differential equations. To have basic skills of integration and differentiation, performing actions with vectors and tensors.
Course content
Електростатичне поле у вакуумі. Загальна задача електростатики. Енергія електростатичного поля. Дипольний момент. Мультипольний розклад потенціалу. Електричне поле в провідниках та діелектриках. Загальне формулювання теореми Гауса. Межові умови для електростатичного поля. Електрична ємність. Постійний електричний струм. Опір. Закони Кірхгофа. Магнітостатика. Векторний та скалярний потенціал. Теорема Гауса для магнітного поля та циркуляція вектора напруженості магнітного поля. Межові умови для магнітного поля. Магнітне поле в середовищі. Парамагнетизм, діамагнетизм, феромагнетизм. Енергія магнітного поля. Електромагнітна індукція. Змінний електричний струм. Струм зміщення. Система рівнянь Максвела. Випромінювання та поширення електромагнітних хвиль. Запізнювальний та випереджаючий потенціали. Розсіяння електромагнітних хвиль. Дифракція. Дисперсія електромагнітних хвиль.
Recommended or required reading and other learning resources/tools
1. A.M. Fedorchenko Theoretical physics, vol. 1 Classical mechanics and electrodynamics, Kyiv, Higher School, 1992. 2. M.V. Makarets, V.Yu. Reshetnyak, O.V. Romanenko, Problems in classical electrodynamics, Kyiv, Kyiv National University, 2006. 3. R. Feynman. The Feynman Lectures on Physics, Vol. II: The New Millennium Edition: Electromagnetism and Matter. 566 Pages (2011). 4. Young, H.D., Freedman, R.A., Sandin, T.R. and Ford, A.L., 1996. University physics (Vol. 9). Reading, MA: Addison-Wesley. 5. Deraad, L.L., Milton, K.A., Tsai, W.Y., and Schwinger, J.S. (1998). Classical Electrodynamics, The Advanced Book Program. 6. Jackson, J.D. (1999). Classical electrodynamics. 7. Greiner, Walter. Classical electrodynamics. Springer Science and Business Media, 2012.
Planned learning activities and teaching methods
Lectures, practical classes, individual work.
Assessment methods and criteria
Oral questioning during lectures and practical classes, homework, module control work, exam
Language of instruction
Ukrainian

Lecturers

This discipline is taught by the following teachers

Andrii Ivanovych Lesiuk
Department of Physics of Functional Materials
Faculty of Physics

Departments

The following departments are involved in teaching the above discipline

Department of Physics of Functional Materials
Faculty of Physics