Optics of one-dimensional periodic structures

Course: Quantum computers, computing and information

Structural unit: Faculty of Physics

Title
Optics of one-dimensional periodic structures
Code
ОК11
Module type
Обов’язкова дисципліна для ОП
Educational cycle
Second
Year of study when the component is delivered
2023/2024
Semester/trimester when the component is delivered
2 Semester
Number of ECTS credits allocated
3
Learning outcomes
The results of the study are mastery of basic methods for constructing solutions of the wave equation in one-dimensional periodic structures, knowledge of photonic crystal theory, periodic waveguide theory, photorefractive effect theory, band transport model theory, theory of two-wave optical interaction of coherent laser beams. Students should also be able to apply the theory of connected waves to study phenomena in one-dimensional periodic structures.
Form of study
Full-time form
Prerequisites and co-requisites
Знати основні положення оптики, електрики і магнетизму, квантової механіки, фізики твердого тіла, спектроскопії кристалів та періодичних наноструктур, методи розв’язування звичайних диференціальних рівнянь та рівнянь у частинних похідних. Вміти коректно шукати наближені розв’язки хвильового рівняння в кристалічних структурах, їх аналізувати та використовувати для аналізу періодичних структур. Володіти навиками побудови математичних моделей при вирішенні поставлених задач, пошуку необхідної довідкової інформації в фізичній літературі та мережі Internet.
Course content
The normative discipline "Optics of one-dimensional periodic structures" is a component of the cycle of professional training of specialists of the educational and qualification level "Master of Physics" and is necessary for the study of other physical disciplines. The course is designed to deepen students' knowledge of the basic principles of physics of periodic structures, which are currently relevant both in terms of their practical application and in terms of studying physical processes in space with a reduced dimension.
Recommended or required reading and other learning resources/tools
3. P. Yeh. Introduction to photorefractive nonlinear optics.- Wiley, New York, 1993. 4. Photorefractive Optics. Materials, Properties, and Applications. - Ed. F.Yu and S.Yin, Academic Press, 2000. 5. Photorefractive Materials and their Applications 1. Basic Effects.- Springer, 2006. 6. J. Frejlich. Photorefractive Materials. Fundamental Concepts, Holographic Recording and Materials Characterization. - Wiley, New Jersey, 2007. 8. J.B. Pendry, D.R. Smith. Reversing light with negative refraction. Physics Today, p.37-43, June 2004. 9. Ari Sihvola. Metamaterials in electromagnetics. Metamaterials, v.1, p.2-11, 2007.
Planned learning activities and teaching methods
Lectures - 30 hours, practical classes, independent work - 60 hours, consultations.
Assessment methods and criteria
The control is carried out according to the module-rating system, which consists of 2 content modules. The knowledge assessment system includes current, modular and semester control of knowledge. Forms of current control: assessment of homework, written independent assignments, tests and tests performed by students. The student can receive a maximum of 20 points for homework, independent assignments, writing essays, oral answers, tests, additions to lectures. Modular control: 2 modular control works. The student can receive a maximum of 20 points for modular tests (10 points for each test). The final semester control is conducted in the form of an exam (60 points). The exam ticket includes 2 theoretical questions (20 points each) and a task (20 points).
Language of instruction
Ukrainian

Lecturers

This discipline is taught by the following teachers

Departments

The following departments are involved in teaching the above discipline