General algebra

Course: Applied physics, nanoelectronics and computer technology

Structural unit: Faculty of Radiophysics, Electronics and Computer Systems

Title
General algebra
Code
ОК.13
Module type
Обов’язкова дисципліна для ОП
Educational cycle
First
Year of study when the component is delivered
2021/2022
Semester/trimester when the component is delivered
2 Semester
Number of ECTS credits allocated
4
Learning outcomes
As a result of studying the course the student will gain basic theoretical concepts and practical skills in analytical geometry, higher and linear algebra.
Form of study
Full-time form
Prerequisites and co-requisites
The student must have a high knowledge of mathematics in the secondary school program
Course content
Module I. Space of geometric vectors, bases and coordinates. Scalar, vector and mixed multiplication vectors. Plane in space and its equations. The distance from the point to the plane. line in space and its equations. Basic curves of the second order and their focal properties. Module II. Matrices and operations with them. Determinant of a square matrix and methods of its calculation. Inverse matrix. Matrix equations. Matrix rank, base minor. Systems of linear equations: Kronecker-Capelli criterion, basic methods of solution. Solution space and structure of the general solution of a system of linear homogeneous equations. Module III. Vector space (general questions). Base replacement. Linear shell vectors, vector subspaces. Euclidean spaces. Linear mappings and linear operators. Eigenvalues and vectors of a linear operator. Linear mappings in Euclidean and unitary spaces.
Recommended or required reading and other learning resources/tools
1. Єфіменко С.В., Жеребко Т.М. Алгебра. Методичний посібник для практичних занять студентів факультету радіофізики, електроніки та комп’ютерних систем. – Київ: КНУ, 2015. – 124 с. 2. Завало С.Т. Курс алгебри – К.: Вища школа, – 1988, 502 с. 3. Зайцева Л.Л., Нетреба А.В. Аналітична геометрія в прикладах і задачах. – Київ: Видавничополіграфічний центр «Київський університет», 2008. – 200 с. 4. Калужнін Л. А. Лінійні простори //Л. А. Калужнін, В. А. Вишенський, Ц. О. Шуб. – К.: Вища школа,1971. – 343 с. 5. Придатченко Ю.В., Вільчинський С.Й., Львов В.А. Лінійна алгебра для фізиків. – Київ: Київський університет, 2010. – 159 с. 6. Чарін В. С. Лінійна алгебра. – К.: Техніка, 2005. – 416 с. 7. Ilyin V. A., Poznyak E. G. Analytic geometry – Mir Publishers, 1984. – 232 р. 8. Ilyin V. A., Poznyak E. G. Linear Algebra – Collets , 1986. – 285 р. 9. Kurosh A. Higher Algebra. – Mir Publishers, 1984. – 428 р.
Planned learning activities and teaching methods
Lectures, practical training, self-dependent work of students
Assessment methods and criteria
The grade for studying the course consists of grades for self-dependent work (up to 30 points), test tasks (up to 30 points) and grades for the exam (up to 40 points).
Language of instruction
Ukrainian

Lecturers

This discipline is taught by the following teachers

Tetiana Mykhailivna Proshchenko
Department of mathematics and Theoretical Radio Physics
Faculty of Radiophysics, Electronics and Computer Systems
Svitlana Volodymyrivna Yefimenko
Department of mathematics and Theoretical Radio Physics
Faculty of Radiophysics, Electronics and Computer Systems