Basics of photonics and electronics

Course: Electronics and information technology in medicine

Structural unit: Faculty of Radiophysics, Electronics and Computer Systems

Title
Basics of photonics and electronics
Code
ВБ.2.01
Module type
Вибіркова дисципліна для ОП
Educational cycle
First
Year of study when the component is delivered
2022/2023
Semester/trimester when the component is delivered
6 Semester
Number of ECTS credits allocated
4
Learning outcomes
The student should know: Correlation between the Einstein coefficients for the probabilities of forced and spontaneous radiation. Absorption coefficients taking into account forced and spontaneous transitions. Schemes for creating inversion of populations of quantum levels. Types of laser cavities and rate equations for inversion and photon concentration. Hall, Thomson, Peltier, Schottky, Josephson effects. Principles of operation and structures of semiconductor lasers. Characteristics of optical communication systems. Mechanisms of losses in optical fibers and methods of their minimization. Photoreceivers of optical signals. Modulation spectral devices. Laser spectroscopy. The student should be able to: Make numerical evaluations of the efficiency of optical quantum devices and predict methods of improving widely used semiconductor circuits, freely navigate the scientific literature on photonics and electronics.
Form of study
Full-time form
Prerequisites and co-requisites
The course is a continuation of the cycle of applied physics courses. Knowledge of the classical sections of general physics, higher mathematics (mathematical analysis, differential equations).
Course content
Knowledge in the field of applied physics is provided, covering the following issues: - basics of generation of electromagnetic waves based on forced radiation; - basics of semiconductor electronics and their use for transmission of optical signals in fiber communication lines; - classical and modern methods of spectroscopy; - detection of optical signals of different intensity, wave range and spatial coordinates.
Recommended or required reading and other learning resources/tools
1 Григорук В. І., Іванісік А. І., Коротков П. А. Експериментальна лазерна оптика: Підручник. - Київ: Видавничо-поліграфічний центр „Київський університет”, 2007. - 383 с. 2 Григорук В. І., Іванісік А. І., Коротков П. А. Експериментальна лазерна фізика: Підручник. - Київ: Віпол, 2004. - 300 с. 3 Іванісік А. І., Коротков П. А. Сучасні фотоприймачі слабких оптичних сигналів: Навчальний посібник. К.: Видавничо-поліграфічний центр «Київський університет», 2003. 133 с. 4 Sze S.M., Ng Kwong K. Physics of semiconductor devices. - Wiley-Interscience, 2007. - 800 р. 5 Дружинін А. О. Твердотільна електроніка: Посібник. -. Львів: НУ „Львівська політехніка”, 2009. - 332 с. 6 Литовченко В. Г., Євтух А. А., Лепіх Я. І., Горбанюк Т. І. Фізика та хімія напівпровідникових адсорбційних сенсорів. - Київ: Наукова Думка, 2021. 288 с.
Planned learning activities and teaching methods
Lectures – 42 hours. Laboratory classes - 14 hours.
Assessment methods and criteria
Semester assessment: the academic discipline has two meaningful modules, each of which is assessed within 25 points (total 50 points). Final assessment: exam. The form of the exam is written and, if necessary, an interview: a ticket with 2 questions (20 points) and a test with 30 questions (total 50 points).
Language of instruction
Ukrainian

Lecturers

This discipline is taught by the following teachers

Anatoliy Ivanovych Ivanisik
Department of Medical Radiophysics
Faculty of Radiophysics, Electronics and Computer Systems

Departments

The following departments are involved in teaching the above discipline

Department of Medical Radiophysics
Faculty of Radiophysics, Electronics and Computer Systems